

Masashi OHKAWA, Dr. Eng.

Professor

Program: Electrical and Information Engineering Area: Human Sciences and Assistive Technology

Undergraduate: Dept. of Biocybernetics

Professional Expertise

He has professional expertise in photonics and optics, especially integrated photonic sensors, holographic memory, and color discrimination. His research group has developed several guided-wave optical sensors with micromachined structures, an optical retrieval system using holographic memory, and a colorimeter using an artificial neural network for the color system conversion.

Research Fields of Interest Integrated Photonic Sensors

- Pressure sensors
- Microphones
- Accelerometers
- Flow sensors

Holography

- Acrylamide-based photopolymer holographic films
- Optical retrieval system using a holographic memory

Colorimeter

• A colorimeter using a digital camera and an artificial neural network

Education

1989: Doctoral Eng. Degree, Graduate School of Engineering Science, Osaka University, Japan 1986: Master Eng. Degree, Graduate School of Engineering Science, Osaka University, Japan 1984: Bachelor Eng. Degree, Faculty of Engineering Science, Osaka University, Japan

Professional Societies and Activities

- 1. IEEE (The Institute of Electrical and Electronics Engineers), Member
- 2. OSA (The Optical Society of America), Member
- 3. SPIE (The International Society for Optics and Photonics), Member
- 4. The Institute of Electronics, Information and Communication Engineers, Member
- 5. The Japan Society of Applied Physics, Member
- 6. The Optical Society of Japan, Member
- 7. The Institute of Electrical Engineers of Japan, Member
- 8. The Laser Society of Japan, Member

Major Publications

Book Chapters

- [1] M. Sengoku eds., "Wonders of electricity", Corona publishing co. ltd. (1995). [in Japanese]
- [2] I. Igarashi, M. Esashi and H. Fujita eds., "Microoptomechatoronics handbook," pp. 153-162 (Sec. 3.3), Asakura publishing co. ltd. (1997). [in Japanese]

Papers (including Conference Papers)

* Pressure sensors

- [1] "Integrated-Optic Pressure Sensor on Silicon Substrate," Applied Optics, vol. 28, no. 23, pp. 5153~5157 (1989).
- [2] "Silicon-based integrated optic sensor using intermodal interference between TM-like and TE-like modes," Fiber and Integrated Optics, vol. 21. no. 2, pp.105-113 (2002).
- [3] "Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect," Optical Engineering, vol. 47, $044402-1\sim 5$ (2008).
- [4] "Sensitivity dependences on side length and aspect ratio of a diaphragm in a glass-based guided-wave optical pressure sensor," Optics Express, vol. 16, no. 19, pp. 15024-15032 (2008).
- [5] "Dependence of Resonance Frequency on Diaphragm Dimensions in a Guided-Wave Optical Pressure Sensor," IEEJ Trans. SM., vol. 129, no. 10, pp.357-362 (2009). [in Japanese]

* Microphones

- [6] "An optical microphone using a silicon-based guided-wave optical pressure sensor," Proc. SPIE, vol. 5728, pp.317-324 (2005).
- [7] "Feasibility of a silicon-based guided-wave optical microphone," *Integrated Photonics and Nanophotonics Research and Applications* (Boston, MA, USA), JMB34 (2008)

* Flow sensors

[8] "Sensitivity dependences of silicon-based guided-wave optical flow sensors," *Integrated Photonics and Nanophotonics Research and Applications* (Honolulu, HI, USA), JTuB7 (2009).

* Holography

- [9] "Fast and highly parallel content addressing of a large amount of information recorded in a holographic memory," Appl. Opt., vol. 33, no. 14, pp. 3003-3009 (1994).
- [10] "Stability of holographic gratings recorded in photopolymer films using different dyes," Proc. SPIE, vol. 6136, pp.613610-1 \sim 8 (2006).
- [11] "Holographic characteristics of two different films using methyl violet dyes in polyvinyl alcohol matrices," Optical Engineering, vol. 46, no. 1, pp. 01580-1~6 (2007).

* Colorimeter

[12] "Evaluation of the artificial neural network for color discrimination - Discrimination of non-learned colors -," J. Light & Vis. Env., vol. 28, no. 2, pp. 101-103 (2004).

An article on our guided-wave optical microphone in "Opto & Laser Europe (March 2005, Issue 126, p.11)."