
 

 

 

 

 

 

 

 
  
Professional Expertise 
He specializes in physical chemistry and studies microscopic structure and transport properties of 
liquids and glasses from the viewpoint of statistical mechanics.  His career started with 
experimental works using spectroscopic and diffraction methods on molten salts about 33 years 
ago.  Initially, molecular simulation was used as a complementary method to them, but now it has 
become a main research method.  Molecular simulation has become a very powerful tool in 
material sciences since the efficient method of the first principles calculation based on quantum 
mechanics developed by Car and Parrinello[1] and many researchers has become to use it. 
However, it still remains a heavy load on the present most computers to perform the calculations 
of time dependent properties of systems containing more than hundred atoms.  Therefore, it 
would be very useful if they could consolidate information on the interatomic forces obtained from 
the first principles calculation as analytical functions, because they could perform the simulation 
with both efficiency in classical method and accuracy in quantum mechanical method.  He now 
collaborates with Prof. Madden at University of Oxford and Prof. Salanne at UPMC, University of 
Paris 06, in order to perform such a realistic simulation mainly in ionic systems. 
[1] R. Car and M. Parrinello, Phys. Rev. Lett., 55, 2471 (1985). 
 
Research Fields of Interest 
He is interested in both structure and transport properties mainly of liquids, especially molten 
salts.  He also studies aqueous solutions of alcohol, molecular liquids, and oxide glasses. 
Particularly, molten salts are useful as heat media in high-temperature energy conversion systems, 
because they are stable both at high temperatures and for wide temperature ranges.  He has 
successfully applied the simulation method to the evaluation of the thermal conductivity of many 
ionic systems including molten salts at high temperatures, because the experimental evaluations 
are very difficult for them, and established an empirical law working well in these systems.   
 
Education  

1990: Doctorate of Science in Chemistry, Graduate School of Science and Technology, Tokyo 
Institute of Technology, Japan 

1987: M.S. in Chemistry, Graduate School of Science, Nagoya University, Japan 
1985: B.S. in Chemistry, Faculty of Science, Nagoya University, Japan  
 
Professional Societies and Activities 
1. The Chemical Society of Japan 
2. The Electrochemical Society of Japan 
3. The Molecular Simulation Society of Japan 
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Awards 

1. Molten Salt Prize, 2011, Molten Salt Committee of the Electrochemical Society of Japan 
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