平成31年度第1次募集(平成30年10月入学含む) 新潟大学大学院自然科学研究科博士前期課程入学者選抜試験問題 外国人留学生特別入試

数理物質科学専攻 数理科学 A3

専門科目 (数学)

注意事項

- 1. この問題冊子は、試験開始の合図があるまで開いてはいけません。
- 2. 問題冊子は、表紙を含めて全部で7ページあります。
- 3. 試験時間は 9:00~11:00 です。
- 4. 試験開始後、次のものが配布されているか確認してください。

問題冊子1部,解答用紙3枚

- 5. 問題は全部で6題あります。そのうち3題を選択して解答してください。
- 6. 各解答用紙には、問題番号と受験番号を記入してください。解答しない場合でも提出してください。
- 7. 下書きは、問題冊子の余白を使用してください。
- 8. 試験終了後、問題冊子は各自持ち帰ってください。

The gamma function $\Gamma(x)$ is defined for x > 0 as

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt.$$

Also, the beta function B(x, y) is defined as

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt,$$

with x > 0 and y > 0. Then, answer the following questions.

- (1) Calculate $\Gamma(n)$ for any natural number n.
- (2) Show B(x, y) = B(y, x).
- (3) Prove that the gamma and beta functions are related to each other through

$$\Gamma(x)\Gamma(y) = \Gamma(x+y)B(x,y).$$

(4) Calculate the definite integral given by

$$I = \int_{-1}^{1} (1 - t^2)^n dt,$$

where n is any natural number.

For the matrix
$$A = \begin{pmatrix} 1 & 1 & -1 & -1 \\ -1 & 3 & -2 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
, answer the following questions.

- (1) Find the eigenvalues α, β, γ of A where α has algebraic multiplicity 2.
- (2) Find a basis of each eigenspace of A.

(3) Find a matrix
$$P$$
 such that $P^{-1}AP = \begin{pmatrix} \alpha & 1 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \gamma \end{pmatrix}$.

Let \mathbb{C} be the set of all complex numbers and let $M_3(\mathbb{C})$ be the set of all 3×3 matrices whose entries are complex numbers. Consider the matrix

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{array}\right)$$

as a linear operator on \mathbb{C}^3 by the matrix operation. We also denote by $\langle \xi, \eta \rangle$ the inner product of $\xi, \eta \in \mathbb{C}^3$. When $T \in M_3(\mathbb{C})$, $T \geq 0$ means that

$$\langle T\xi, \xi \rangle \ge 0$$

for any $\xi \in \mathbb{C}^3$, and T^* is the conjugate transposed matrix of T. We define $\ker T$ as

$$\ker T = \{ \xi \in \mathbb{C}^3 | T\xi = 0 \}.$$

Then, answer the following questions.

- (1) Find $P \in M_3(\mathbb{C})$ which satisfies the conditions $P \geq 0$ and $P^2 = A^*A$.
- (2) Find $U \in M_3(\mathbb{C})$ which satisfies the conditions A = UP, $UU^*U = U$ and $\ker U = \ker A$.

Let $\mathbb C$ be the set of all complex numbers, and put $\mathbb D=\{a\in\mathbb C|\,|a|<1\}$. For any $a,b\in\mathbb D$, define $a\oplus b$ as

$$a \oplus b = \frac{a+b}{1+\overline{a}b}$$

by using arithmetic and conjugate operations of complex numbers. Then, answer the following questions.

- (1) Show $a \oplus b \in \mathbb{D}$.
- (2) For $a = \frac{1}{2}$, $b = \frac{i}{2}$, $c = \frac{2+2i}{-4+i}$, find the values $a \oplus (b \oplus c)$ and $(a \oplus b) \oplus c$, respectively.
- (3) For any $a, b \in \mathbb{D}$, express $z \in \mathbb{C}$ as a function of two variables a and b satisfying the condition

$$a \oplus b = z(b \oplus a).$$

(4) For any $a, b, c \in \mathbb{D}$, show the identity

$$a \oplus (b \oplus c) = (a \oplus b) \oplus (zc),$$

where z is given in (3).

Let Q_n $(n \ge 1)$ denote an *n*-dimentional hypercube graph with

$$V(Q_n) = \{(a_1, \dots, a_n) | a_i \in \{0, 1\}\} \text{ and } E(Q_n) = \{xy | d_h(x, y) = 1, x, y \in V(Q_n)\},$$

where $d_h(x, y) = |\{i | a_i \neq b_i\}|$ for two vertices $x = (a_1, \ldots, a_n)$ and $y = (b_1, \ldots, b_n)$. Here, |S| is the number of elements of a set S. Then, answer the following questions.

- (1) Evaluate the number of vertices and the number of edges of Q_n , respectively.
- (2) Prove that the distance between two vertices x and y of Q_n equals $d_h(x, y)$. Furthermore, evaluate the diameter of Q_n .
- (3) Prove that Q_n contains no odd cycle.

A random variable Y is related to a normal random variable X with mean μ and variance σ^2 through $Y = e^X$. Then, answer the following questions.

(1) Obtain the probability density function $f_Y(y)$ of Y. Note that the probability density function $f_X(x)$ of X is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

- (2) Calculate the mean of Y.
- (3) Calculate the median of Y.
- (4) Calculate the mode of Y.