NETWORK PROBLEMS IN MULTI-HOP WIRELESS NETWORKS

KEISUKE NAKANO
MASAKAZU SENGOKU

DEPARTMENT OF INFORMATION ENGINEERING
NIIGATA UNIVERSITY

NOVEMBER 18, 2004

• Network systems
 – Computer networks, Internet, …
 – Telephone networks, Mobile networks, …
 – Road networks, Power transmission systems, …
 – Social networks, web networks, …
 – etc.

• Development of strategies for network control using topological properties of the systems

• Network design principles based on topological properties of the systems

• Tools
 – Graph theory
 – Network theory
 – Queueing theory
 – Stochastic geometry and so on.
Fundamental network problems in mobile multi-hop wireless networks

- Characterization of connectivity of multi-hop cellular networks
- Location of relay facilities to improve connectivity
- Basic properties of a charging and rewarding scheme
PART 1

Characterization of connectivity of multi-hop cellular networks

Multi-hop Cellular
• Multi-hop networking can extend a cell
 – Next generation mobile systems
 • Higher bit rates ---> higher frequency bands ---> micro cellular ---> many BSs ---> cost reduction
 – Dead Spot Problem
Multi-hop cellular with fixed relay facilities

- **Advantage:**
 - Stable route, easy route set up
- **Disadvantage**
 - Preplanning, actual location of relay nodes,
 - Rearrangement is required if the environment has changed

Mobile multi-hop cellular

- **Advantage:**
 - Multi-hop paths will be provided automatically and adaptively to the environment around the mobiles
- **Disadvantage**
 - Route set up, frequent route update
 - Mobiles have to be relay nodes for the provider’s benefit

Multi-hop path between a mobile and BS

Suppose that a mobile leaves a cell and moves away from the base station. This mobile has at least a path to BS in the ON intervals and does not in the OFF intervals.

Time scale for multi-hop paths by fixed relay facilities:

- ON
- OFF

Time scale for multi-hop paths by mobiles:

- ON
- OFF
- ON
- OFF
- ON
- OFF
Problem statement

- Mobile multi-hop networking provides multi-hop paths with frequent ON-OFF transitions
- For cell design, we have to well understand behaviors of the multi-hop paths
 - Length of the ON period
 - Length of the OFF period
- What limits ON period and what causes OFF period?
 - Mobility of nodes.
 - Randomness of distribution of nodes
 - Capacity of relay nodes (relaying capability)
- Estimation by Stochastic Geometry

Mobility

- One dimensional movement along a street (Street micro cellular is assumed)
 - Case 1: Relay terminals are fixed
 - Case 2: All relay terminals move right
 - Case 3: Some relay terminals are fixed and other terminals move right
 - Case 4: Relay terminals move right or left
- Velocity: constant or random variable
- Intersections
Fixed relay facilities

• If distance between two nodes is not greater than d, there exist a link between them.
• If we have n facilities, the degree of cell extension is nd.

Fixed but random

• The distribution of nodes obeys a Poisson distribution of intensity λ.
• If distance between two nodes is not greater than d, there exist a link between them.
• Mean length of extended area is $\frac{e^{\lambda d} - 1}{\lambda} - d$.
• Fixed relay nodes.
• Only a node mn_0 move right at velocity v_1.
• Life time of the connection: $\mathbb{T}_1' - \mathbb{T}_1$
• Mean life time
 \[
 \frac{1}{v_1} \left(\frac{e^{vd} - 1}{\lambda - d} \right)
 \]
<table>
<thead>
<tr>
<th>Case</th>
<th>(E(T_1)): Mean length of the first ON period</th>
<th>(E(T_2)): Second ON period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1: Fixed relay nodes. Only (mn_0) moves right at (v_1)</td>
<td>(\frac{1}{v_1} \left(\frac{e^{\lambda d} - 1}{\lambda} - d \right))</td>
<td>0</td>
</tr>
<tr>
<td>Case 2: All nodes move right at (v_1)</td>
<td>(\frac{1}{v_1} \left(\frac{e^{\lambda d} - 1}{\lambda} - d \right))</td>
<td>0</td>
</tr>
<tr>
<td>Case 3: Mobile nodes move right at (v_1), and other nodes are fixed</td>
<td>(\frac{2}{v_1} \left(\frac{e^{\lambda d/2} - 1}{\lambda/2} - d \right))</td>
<td>(\frac{1}{v_1} \left(\frac{e^{\lambda d/2} - 1}{\lambda} \right))</td>
</tr>
<tr>
<td>Case 4: Mobile nodes move right at (v_1) or move left at (v_2)</td>
<td>(\frac{2v_1 + v_2}{v_1(v_1 + v_2)} \left(\frac{e^{\lambda d/2} - 1}{\lambda/2} - d \right))</td>
<td>(\frac{1}{v_1 + v_2} \left(\frac{e^{\lambda d/2} - 1}{\lambda} \right))</td>
</tr>
</tbody>
</table>

\(\lambda \): Mean number of nodes per unit length

<table>
<thead>
<tr>
<th>Case</th>
<th>Lower bound of the mean length of an OFF period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1: Fixed relay nodes. Only (mn_0) moves right at (v_1)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Case 2: All nodes move right at (v_1)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Case 3: Mobile nodes move right at (v_1), and other nodes are fixed</td>
<td>(\frac{1}{v_1} \left(\frac{4}{\lambda} \right))</td>
</tr>
<tr>
<td>Case 4: Mobile nodes move right at (v_1) or move left at (v_2)</td>
<td>(\frac{1}{v_1 + v_2} \left(\frac{4}{\lambda} \right))</td>
</tr>
</tbody>
</table>

\(\lambda \): Mean number of nodes per unit length
\[\theta = 0.5, \, v_1 = v_2 = 1 \text{ m/s}, \, d = 10 \text{ m} \]

\[\theta = 0.7, \, v_1 = v_2 = 1 \text{ m/s}, \, d = 10 \text{ m} \]
\[\square = 0.3, \ v_1 = v_2 = 1 \text{ (m/s)}, \ d = 10 \text{ (m)} \]

Length of ON period

Length of OFF period

Effects of intersection

Without intersection

With intersection
Effects of the relaying capacity of a node on cell extension by multi-hop networking
Waiting Time for Patterns

- Choose a character from \{1, 2, \ldots, m\} until one of \(n\) given patterns \(S_1, S_2, \ldots, S_n\) appears.
- The digits occur with probabilities \(p_1, p_2, \ldots, p_m\).
- Mean waiting time \(E[N]\) is obtained from the following simultaneous equations:

\[
\begin{align*}
\sum_{j=1}^{n} e_{ij} \pi_j &= E[N], i = 1, 2, \ldots, n \\
\sum_{j=1}^{n} \pi_j &= 1,
\end{align*}
\]

\[
e_{ij} = \sum_{r=1}^{L} \varepsilon_r(i, j) \frac{e_{ij}}{p_{c_1} p_{c_2} \ldots p_{c_r}}
\]

\(L = \min(L_i, L_j)\), where \(L_i\) is Length of \(S_i\)

\(\varepsilon_r(i, j) = 1\) if \(S_i\) ends with \(c_1c_2\ldots c_r\) and \(S_j\) begins with \(c_1c_2\ldots c_r\) and \(\varepsilon_r(i, j) = 0\) otherwise.

\(\pi_j\) is the probability that the sequence ends in pattern \(S_j\)

Effects on capacity on cell extension

- A node can carry only one communication
- Multiple communication requirements
Assumptions on distribution of nodes

Two nodes communicate with BS simultaneously ($k=2$).

- Probability p
- Probability $1-p$

$\Delta x \rightarrow 0$ Exponential distribution

- Capacity is 1 --> A node can be a relay node for only one node.
- Communication range: $d = m \Delta x$

$m=4, k=2$

All nodes move right
Problem
What is the mean length of interval between the time at which mn_0 leaves the cell and the time at which mn_0 or mn_1 loses connection to BS?

$m=4, k=2$

Communicating nodes

No path for mn_1
Answer is
\[
\left\{E(N) - (m-k+1)\right\} \frac{\Delta x}{v}
\]

- \(E(N)\) is the waiting time until one of the patterns \(000, 0010, 0100\) appears in a random sequence of 0 and 1.
- \(m=4\)
 - Communication range \(d = m \cdot x\)

\[
E(N) = \frac{1}{1-p} + \frac{1}{(1-p)^2} + \frac{1}{(1-p)^3} \left(1 + p + p^2\right)^2
\]

No limit for relay
\[
E(N) = \frac{1}{1-p} + \frac{1}{(1-p)^2} + \frac{1}{(1-p)^3} + \frac{1}{(1-p)^4}
\]

Communication range \(d=1\)

\[\square \ x=1/256 \ (Theory)\]
\[\square \ x=1/128 \ (Theory)\]
\[\square \ x->\square \ (Simulation)\]
\[\square \ (Intensity \ of \ nodes)\]

Two paths

No limit
Current status

• $E\{T_1\}$ for fixed relay nodes has been obtained.
• $E\{T_1\}$ for relay nodes moving toward one direction has been obtained.
• Upper and lower bounds of $E\{T_1\}$ for relay nodes moving right or left have been obtained.
• An approximate method for $E\{T_1\}$ for relay nodes moving right or left have been proposed.