

Shuh-ichi NISHIKAWA, Ph.D.

Professor Program: Life and Food Sciences Area: Life Sciences Undergraduate: Dept. of Biology, Faculty of Science

Professional Expertise

1992: JSPS Research Fellow (Department of Biology, Faculty of Science, University of Tokyo)
1993: Assistant Professor (Department of Chemistry, Faculty of Science, Nagoya University)
2001: Associate Professor (Graduate School of Science, Nagoya University)
2012: Professor (Department of Biology, Faculty of Science, Niigata University)
2001~2003: Visiting Scientist (Department of Molecular Genetics and Cell Biology, University of Chicago)

Research Fields of Interest

The endoplasmic reticulum (ER) is the site of protein synthesis of the secretory pathway in eukaryotic cells. The ER has a quality control system, which ensures that only correctly folded proteins are transported out of the ER. Molecular chaperones in the ER play important roles in ER quality control. BiP, a molecular chaperone of the Hsp70 family in the ER, functions in ER quality control by keeping solubility of misfolded proteins for refolding or degradation in co-operation of ER-localized J-domain containing co-chaperones (J-proteins). Our group has been shown that *Arabidopsis thaliana*, a higher plant, contains a BiP and J-protein system similar to yeast and mammalian cells. Using *Arabidopsis* mutants of these chaperones, we are analyzing roles of ER quality control in plant development and adaptation to environment.

Education

1992: Ph.D. Graduate School of Science, The University of Tokyo, Japan1989: M.S. Graduate School of Science, The University of Tokyo, Japan1987: B.S. Department of Biology, Faculty of Science, The University of Tokyo, Japan

Professional Societies and Activities

- 1. The Japanese Society for Plant Physiologists
- 2. The Japanese Biochemical Society
- 3. Japan Society for Cell Biology
- 4. The Molecular Biology Society of Japan
- 5. The Botanical Society of Japan
- 6. The American Society for Cell Biology
- 7. American Society of Plant Biologists

Awards

1. Inoue Research Award for Young Scientists (1992)

Major Publications

Papers

[1] Tamura, Y., Harada, Y., Nishikawa, S., Yamano, K., Kamiya, M., Shiota, T., Kuroda, T., Kuge, O., Sesaki, H., Imai, K., Tomii, K., and Endo, T. (2013) Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria *Cell Metab*. 17: 709-718

[2] Izawa, T., Tsuboi, T., Kuroha, K., Inada, T., Nishikawa, S., and Endo, T. (2012) Roles of Dom34:Hbs1 in non-stop protein clearance from translocators for normal organelle protein influx. *Cell Rep.* 2: 447-453

[3] Izawa, T., Nagai, H., Endo, T. and Nishikawa, S. (2012) Yos9p and Hrd1p mediate ER retention of misfolded proteins for ER- associated degradation. *Mol. Biol. Cell* 23: 1283-1293
[4] Mano, S., Miwa, T., Nishikawa, S., Mimura, T., and Nishimura , M. (2011) The Plant Organelles Database 2 (PODB2): an updated resource containing movie data of plant organelle dynamics. *Plant Cell Physiol.* 52: 244-253

[5] Dobritsa, A. A., Lei, Z., Nishikawa, S., Urbanczyk-Wochniak, E., Huhman, D. V., Preuss, D., and Sumner, L. W. (2010) LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. *Plant Physiol.* 153: 937-955

[6] Yamamoto, M., Kawanabe, M., Hayashi, M., Endo, T., and Nishikawa, S. (2010) A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan. *Biochem. Biophys. Res. Commun.* 393: 384-389

[7] Maruyama, D., Endo, T., and Nishikawa, S. (2010) BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. *Proc. Natl. Acad. Sci. USA* 107: 1684-1689

[8] Yamamoto, H., Fukui, K., Takahashi, H., Kitamura, S., Shiota, T., Terao, K., Uchida, M., Esaki, M., Nishikawa, S., Yoshihisa, T., Yamano, K., and Endo, T. (2009) Roles of TOM70 in import of presequence-containing mitochondrial proteins. *J. Biol. Chem.* 284: 31635-31646

[9] Kawano, S., Yamano, K., Naoé, M., Momose, T., Terao, K., Nishikawa, S., Watanabe, N., and Endo, T. (2009) Structural basis of yeast Tim40/Mia40 as an oxidative translocator in the mitochondrial intermembrane space. *Proc. Natl. Acad. Sci. USA* 106: 14403-14407

[10] Dobrista, A. A., Nishikawa, S., Preuss, D., Urbanczyk-Wochniak, E., Sumner, L. W., Hammond, A., Carlson, A., and Swanson, R. J. (2009) LAP3, a novel plant protein required for pollen development, is essential for proper exine formation. *Sex. Plant Reprod.* 22: 167-177

[11] Sakoh-Nakatogawa, M., Nishikawa, S., and Endo, T. (2009) Roles of protein disulfide isomerase-mediated disulfide bond formation of yeast Mn11p in ER-associated degradation. *J. Biol. Chem.* 284: 11815-11825

[12] Mano, S., Miwa, T., Nishikawa, S., Mimura, T., and Nishimura, M. (2009) Seeing is believing: On the use of image databases for visually exploring plant organelle dynamics. *Plant Cell Physiol.* 50: 2000-2014

[13] Nishikawa, S.* Hirata, A., and Endo, T. (2008) Nuclear

inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating. *Genes Cells* 13: 1185-1195

[14] Yamamoto, M., Maruyama, D., Endo, T., and Nishikawa, S. (2008) Arabidopsis thaliana has a set of J proteins in the endoplasmic reticulum that are conserved from yeast to animals and plants. *Plant Cell Physiol.* 49: 1547-1562

[15] Makio, T., Nishikawa, S., Nakayama, T., Nagai, H., and Endo T. (2008) Identification and characterization of a Jem1p ortholog of Candida albicans: dissection of Jem1p functions in karyogamy and protein quality control in Saccharomyces cerevisiae. *Genes Cells* 13: 1015-1026

[16] Mano, S., Miwa, T., Nishikawa, S., Mimura, T., and Nishimura, M. (2008) The Plant Organelles Database (PODB): a collection of visualized plant organelles and protocols for plant organelle research. *Nucleic Acids Res.* 36: D929-D937